Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Chem Neuroanat ; 136: 102391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219812

RESUMO

BACKGROUND: Maternal diabetes during pregnancy can affect the neurological development of offspring. Glial cell-derived neurotrophic factor (GDNF), neurturin (NRTN), and neural cell adhesion molecules (NCAM) are three important proteins for brain development. Therefore, this study aimed to investigate the impacts of the mentioned neurotrophic factors in the hippocampal dentate gyrus (DG) of rat offspring born to diabetic mothers. METHODS: Wistar female rats were randomly allocated into diabetic (STZ-D) [(45 mg/kg BW, STZ (Streptozotocin), i.p)], diabetic + NPH insulin (STZ-INS) [(4-6 unit/kg/day SC)], and control groups. The animals in all groups were mated by non-diabetic male rats. Two weeks after birth, male pups from each group were sacrificed and then protein contents of GDNF, NRTN, and NCAM were evaluated using immunohistochemistry. RESULTS: The study found that the expression of GDNF and NRTN in the hippocampus of diabetic rat offspring was significantly higher compared to the diabetic+ insulin and control groups, respectively (P < 0.01, P < 0.001). Additionally, the expression of NCAM was significantly higher in the diabetic group the diabetic+ insulin and control groups (P < 0.01, P < 0.001). CONCLUSIONS: The results of the study revealed that diabetes during pregnancy significantly impacts the distribution pattern of GDNF, NRTN, and NCAM in the hippocampus of rat neonates.


Assuntos
Diabetes Gestacional , Insulinas , Humanos , Gravidez , Ratos , Animais , Masculino , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurturina/metabolismo , Neurturina/farmacologia , Ratos Wistar , Moléculas de Adesão de Célula Nervosa/metabolismo , Giro Denteado/metabolismo
2.
Mov Disord ; 38(9): 1728-1736, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544016

RESUMO

BACKGROUND: Neurturin is a member of the glial cell line-derived neurotrophic factor family of neurotrophic factors and has the potential to protectdegenerating dopaminergic neurons. OBJECTIVE: Here, we performed post-mortem studies on two patients with advanced Parkinson's disease that survived 10 years following AAV-neurturin gene (Cere120) delivery to verify long-term effects of trophic factor neurturin. METHODS: Cere120 was delivered to the putamen bilaterally in one case and to the putamen plus substantia nigra bilaterally in the second. Immunohistochemistry was used to examine neurturin, Rearranged during transfection(RET), phosphor-S6, and tyrosine hydroxylase expressions, inflammatory reactions, and α-synuclein accumulation. RESULTS: In both patients there was persistent, albeit limited, neurturin expression in the putamen covering 1.31% to 5.92% of the putamen. Dense staining of tyrosine hydroxylase-positive fibers was observed in areas that contained detectable neurturin expression. In substantia nigra, neurturin expression was detected in 11% of remaining melanin-containing neurons in the patient with combined putamenal and nigral gene delivery, but not in the patient with putamenal gene delivery alone. Tyrosine hydroxylase positive neurons were 66% to 84% of remaining neuromelanin neurons in substantia nigra with Cere120 delivery and 23% to 24% in substantia nigra without gene delivery. More RET and phosphor-S6 positive neurons were observed in substantia nigra following nigral Cere120. Inflammatory and Lewy pathologies were similar in substantia nigra with or without Cere120 delivery. CONCLUSIONS: This study provides evidence of long-term persistent transgene expression and bioactivity following gene delivery to the nigrostriatal system. Therefore, future efforts using gene therapy for neurodegenerative diseases should consider means to enhance remaining dopamine neuron function and stop pathological propagation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Neurturina/genética , Neurturina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Neurônios/metabolismo , Terapia Genética , Substância Negra/metabolismo
3.
Cell Metab ; 33(11): 2215-2230.e8, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34592133

RESUMO

Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics. Using a muscle-specific NRTN transgenic mouse (HSA-NRTN) and RNA sequencing of MN somas, we observed that retrograde NRTN signaling promotes a shift toward a slow MN identity. In muscle, NRTN increased capillary density and oxidative capacity and induced a transcriptional reprograming favoring fatty acid metabolism over glycolysis. This combination of effects on muscle and MNs makes HSA-NRTN mice lean with remarkable exercise performance and motor coordination. Interestingly, HSA-NRTN mice largely recapitulate the phenotype of mice with muscle-specific expression of its upstream regulator PGC-1ɑ1. This work identifies NRTN as a myokine that couples muscle oxidative capacity to slow MN identity.


Assuntos
Neurônios Motores , Neurturina , Animais , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Neurturina/genética , Neurturina/metabolismo , Neurturina/farmacologia , Estresse Oxidativo
4.
J Cell Physiol ; 236(12): 8184-8196, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34170009

RESUMO

Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Asma/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Neurturina/metabolismo
5.
Neurobiol Dis ; 153: 105298, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684514

RESUMO

The failure of glial cell derived neurotropic factor to be efficacious in blinded clinical trials for Parkinson's disease may be due to alterations in signaling receptors and downstream signaling molecules. To test this hypothesis, brain sections were obtained from older adults with no motor deficit (n = 6), minimal motor deficits (n = 10), and clinical diagnosis of Parkinson's disease (n = 10) who underwent motor examination proximate to death. Quantitative unbiased stereology and densitometry were performed to analyze RET and phosphorylated ribosomal protein S6 expression in nigral neurons. Individuals with no motor deficit had extensive and intense RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra. The number and staining intensity of RET-immunoreactive neurons were reduced moderately in subjects with minimal motor deficits and severely reduced in Parkinson's disease relative to no motor deficit group. The number and staining intensity of phosphorylated ribosomal protein S6 was more markedly reduced in both subjects with minimal motor deficits and Parkinson's disease. Reductions in levels of RET and phosphorylated ribosomal protein S6 were recapitulated in a non-human primate genetic Parkinson's disease model based on over-expression of human mutant α-synuclein (A53T). These data indicate that for neurotrophic factors to be effective in patients with minimal motor deficits or PD, these factors would likely have to upregulate RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra .


Assuntos
Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurturina/metabolismo , Doença de Parkinson/metabolismo , Sintomas Prodrômicos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteína S6 Ribossômica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Densitometria , Feminino , Humanos , Macaca fascicularis , Masculino , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transdução de Sinais , alfa-Sinucleína/genética
6.
Cell Mol Gastroenterol Hepatol ; 11(5): 1548-1592.e1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444816

RESUMO

BACKGROUND AND AIMS: Bowel function requires coordinated activity of diverse enteric neuron subtypes. Our aim was to define gene expression in these neuron subtypes to facilitate development of novel therapeutic approaches to treat devastating enteric neuropathies, and to learn more about enteric nervous system function. METHODS: To identify subtype-specific genes, we performed single-nucleus RNA-seq on adult mouse and human colon myenteric plexus, and single-cell RNA-seq on E17.5 mouse ENS cells from whole bowel. We used immunohistochemistry, select mutant mice, and calcium imaging to validate and extend results. RESULTS: RNA-seq on 635 adult mouse colon myenteric neurons and 707 E17.5 neurons from whole bowel defined seven adult neuron subtypes, eight E17.5 neuron subtypes and hundreds of differentially expressed genes. Manually dissected human colon myenteric plexus yielded RNA-seq data from 48 neurons, 3798 glia, 5568 smooth muscle, 377 interstitial cells of Cajal, and 2153 macrophages. Immunohistochemistry demonstrated differential expression for BNC2, PBX3, SATB1, RBFOX1, TBX2, and TBX3 in enteric neuron subtypes. Conditional Tbx3 loss reduced NOS1-expressing myenteric neurons. Differential Gfra1 and Gfra2 expression coupled with calcium imaging revealed that GDNF and neurturin acutely and differentially regulate activity of ∼50% of myenteric neurons with distinct effects on smooth muscle contractions. CONCLUSION: Single cell analyses defined genes differentially expressed in myenteric neuron subtypes and new roles for TBX3, GDNF and NRTN. These data facilitate molecular diagnostic studies and novel therapeutics for bowel motility disorders.


Assuntos
Biomarcadores/análise , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurturina/metabolismo , Análise de Célula Única/métodos , Proteínas com Domínio T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurturina/genética , RNA-Seq/métodos , Proteínas com Domínio T/genética , Adulto Jovem
7.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020210

RESUMO

Lung-resident macrophages are crucial to the maintenance of health and in the defence against lower respiratory tract infections. Macrophages adapt to local environmental cues that drive their appropriate function; however, this is often dysregulated in many inflammatory lung pathologies. In mucosal tissues, neuro-immune interactions enable quick and efficient inflammatory responses to pathogenic threats. Although a number of factors that influence the antimicrobial response of lung macrophages are known, the role of neuronal factors is less well understood. Here, we show an intricate circuit involving the neurotrophic factor, neurturin (NRTN) on human lung macrophages that dampens pro-inflammatory cytokine release and modulates the type of matrix metalloproteinases produced in response to viral stimuli. This circuit involves type 1 interferon-induced up-regulation of RET that when combined with the glial cell line-derived neurotrophic factor (GDNF) receptor α2 (GFRα2) allows binding to epithelial-derived NRTN. Our research highlights a non-neuronal immunomodulatory role for NRTN and a novel process leading to a specific antimicrobial immune response by human lung-resident macrophages.


Assuntos
Pulmão/imunologia , Macrófagos Alveolares/metabolismo , Neurturina/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/imunologia , Neurônios/metabolismo , Neurturina/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA Mensageiro/metabolismo , Viroses/imunologia , Viroses/metabolismo
8.
Protein Expr Purif ; 168: 105552, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866372

RESUMO

Neurturin is a potent neurotrophic factor that has been investigated as a potential therapeutic agent for the treatment of neurodegenerative diseases, including Parkinson's disease, and, more recently, for the treatment of type II diabetes. However, purification of neurturin for clinical applications has been hampered by its low solubility in aqueous solutions. Here we describe the development of a scalable manufacturing process for recombinant neurturin from E. coli. inclusion bodies. Neurturin was refolded from solubilized inclusion bodies by fed-batch dilution refolding with a titer of 90 mg per liter refold and a refold yield of 89%. A two-step purification process using cation exchange and hydrophobic interaction chromatography, followed by formulation using tangential flow filtration resulted in an overall process yield of about 56 mg purified neurturin per liter refold. Solubility of neurturin during the purification process was maintained by the addition of 15% (w/v) glycerol to all buffers. For clinical applications and parenteral administration glycerol was replaced by 15% (w/v) sulfobutyl ether-beta-cyclodextrin (i.e. Captisol) in the drug substance formulation buffer. The final purified product had low or undetectable levels of product-related impurities and concentrations of process-related contaminants such as host cell proteins, host cell DNA, endotoxins and Triton X-100 were reduced more than 10,000-fold or below the limit of detection. Bioactivity of purified recombinant neurturin was demonstrated in a cell-based assay by activation of the MAPK signaling pathway.


Assuntos
Escherichia coli/genética , Corpos de Inclusão/química , Neurturina/genética , Xilanos/química , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luciferases/genética , Luciferases/metabolismo , Neurturina/química , Neurturina/metabolismo , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elemento de Resposta Sérica/genética , Temperatura , Xilanos/metabolismo , beta-Ciclodextrinas/química
9.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535977

RESUMO

RET is a receptor tyrosine kinase (RTK) that plays essential roles in development and has been implicated in several human diseases. Different from most of RTKs, RET requires not only its cognate ligands but also co-receptors for activation, the mechanisms of which remain unclear due to lack of high-resolution structures of the ligand/co-receptor/receptor complexes. Here, we report cryo-EM structures of the extracellular region ternary complexes of GDF15/GFRAL/RET, GDNF/GFRα1/RET, NRTN/GFRα2/RET and ARTN/GFRα3/RET. These structures reveal that all the four ligand/co-receptor pairs, while using different atomic interactions, induce a specific dimerization mode of RET that is poised to bring the two kinase domains into close proximity for cross-phosphorylation. The NRTN/GFRα2/RET dimeric complex further pack into a tetrameric assembly, which is shown by our cell-based assays to regulate the endocytosis of RET. Our analyses therefore reveal both the common mechanism and diversification in the activation of RET by different ligands.


Assuntos
Ativação Enzimática , Proteínas Proto-Oncogênicas c-ret/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Microscopia Crioeletrônica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/química , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurturina/química , Neurturina/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional
10.
Biomaterials ; 216: 119245, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31200143

RESUMO

Cell transplantation of autologous adult biopsies, grown ex vivo as epithelial organoids or expanded as spheroids, are proposed treatments to regenerate damaged branching organs. However, it is not clear whether transplantation of adult organoids or spheroids alone is sufficient to initiate a fetal-like program of branching morphogenesis in which coordinated branching of multiple cell types including nerves, mesenchyme and blood vessels occurs. Yet this is an essential concept for the regeneration of branching organs such as lung, pancreas, and lacrimal and salivary glands. Here, we used factors identified from fetal organogenesis to maintain and expand adult murine and human epithelial salivary gland progenitors in non-adherent spheroid cultures, called salispheres. These factors stimulated critical developmental pathways, and increased expression of epithelial progenitor markers such as Keratin5, Keratin14, FGFR2b and KIT. Moreover, physical recombination of adult salispheres in a laminin-111 extracellular matrix with fetal salivary mesenchyme, containing endothelial and neuronal cells, only induced branching morphogenesis when neurturin, a neurotrophic factor, was added to the matrix. Neurturin was essential to improve neuronal survival, axon outgrowth, innervation of the salispheres, and resulted in the formation of branching structures with a proximal-distal axis that mimicked fetal branching morphogenesis, thus recapitulating organogenesis. Epithelial progenitors were also maintained, and developmental differentiation programs were initiated, showing that the fetal microenvironment provides a template for adult epithelial progenitors to initiate branching and differentiation. Further delineation of secreted and physical cues from the fetal niche will be useful to develop novel regenerative therapies that instruct adult salispheres to resume a developmental-like program in vitro and to regenerate branching organs in vivo.


Assuntos
Epitélio/inervação , Laminina/metabolismo , Neurturina/metabolismo , Glândulas Salivares/citologia , Esferoides Celulares/citologia , Células-Tronco/citologia , Adulto , Animais , Materiais Biocompatíveis/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Feminino , Humanos , Camundongos Endogâmicos ICR , Neurogênese , Glândulas Salivares/crescimento & desenvolvimento , Glândulas Salivares/metabolismo , Esferoides Celulares/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual
11.
PLoS One ; 14(5): e0216527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107888

RESUMO

In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures-dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles-where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3-6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.


Assuntos
Fibras Nervosas Amielínicas/metabolismo , Neurofibroma Plexiforme/patologia , Neurofibromatose 1/patologia , Células de Schwann/metabolismo , Neoplasias Cutâneas/patologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Amielínicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurofibroma Plexiforme/metabolismo , Neurofibromatose 1/imunologia , Neurturina/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Adulto Jovem
12.
Eur J Neurosci ; 49(4): 440-452, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30103283

RESUMO

Perhaps the most important unmet clinical need in Parkinson's disease (PD) is the development of a therapy that can slow or halt disease progression. Extensive preclinical research has provided evidence for the neurorestorative properties of several growth factors, yet only a few have been evaluated in clinical studies. Attempts to achieve neuroprotection by addressing cell-autonomous mechanisms and targeting dopaminergic neurons have been disappointing. Four different trophic factors have so far entered clinical trials in PD: glial cell line-derived growth factor, its close structural and functional analog neurturin, platelet-derived growth factor and cerebral dopaminergic neurotrophic factor. This article reviews the pre-clinical evidence for the neuroprotective and neurorestorative actions of these growth factors and discusses limitations of preclinical models, which may hamper successful translation to the clinic. We summarize the previous and ongoing clinical trials using growth factors in PD and emphasize the caveats in clinical trial design that may prevent the further development and registration of potentially neuroprotective and neurorestorative treatments for individuals suffering from PD.


Assuntos
Fatores de Crescimento Neural/metabolismo , Neuregulina-1/metabolismo , Neuroproteção/fisiologia , Neurturina/metabolismo , Doença de Parkinson/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Humanos
13.
Cell Transplant ; 27(5): 814-830, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871515

RESUMO

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease in the elderly and the patients suffer from uncontrolled movement disorders due to loss of dopaminergic (DA) neurons on substantia nigra pars compacta (SNpc). We previously reported that transplantation of human fetal midbrain-derived neural precursor cells restored the functional deficits of a 6-hydroxy dopamine (6-OHDA)-treated rodent model of PD but its low viability and ethical issues still remain to be solved. Albeit immune privilege and neural differentiation potentials suggest mesenchymal stem cells (MSCs) from various tissues including human placenta MSCs (hpMSCs) for an alternative source, our understanding of their therapeutic mechanisms is still limited. To expand our knowledge on the MSC-mediated PD treatment, we here investigated the therapeutic mechanism of hpMSCs and hpMSC-derived neural phenotype cells (hpNPCs) using a PD rat model. Whereas both hpMSCs and hpNPCs protected DA neurons in the SNpc at comparable levels, the hpNPC transplantation into 6-OHDA treated rats exhibited longer lasting recovery in motor deficits than either the saline or the hpMSC treated rats. The injected hpNPCs induced delta-like ligand (DLL)1 and neurotrophic factors, and influenced environments prone to neuroprotection. Compared with hpMSCs, co-cultured hpNPCs more efficiently protected primary neural precursor cells from midbrain against 6-OHDA as well as induced their differentiation into DA neurons. Further experiments with conditioned media from hpNPCs revealed that the secreted factors from hpNPCs modulated immune responses and neural protection. Taken together, both DLL1-mediated contact signals and paracrine factors play critical roles in hpNPC-mediated improvement. First showing here that hpMSCs and their neural derivative hpNPCs were able to restore the PD-associated deficits via dual mechanisms, neuroprotection and immunosuppression, this study expanded our knowledge of therapeutic mechanisms in PD and other age-related diseases.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Células-Tronco Neurais/citologia , Neuroproteção , Doença de Parkinson/patologia , Placenta/citologia , Animais , Morte Celular , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Microambiente Celular , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Imunomodulação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Microglia/metabolismo , Atividade Motora , Células-Tronco Neurais/transplante , Neurturina/metabolismo , Oxidopamina , Doença de Parkinson/fisiopatologia , Gravidez , Ratos Sprague-Dawley
14.
J Biol Chem ; 293(15): 5492-5508, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29414779

RESUMO

Neurturin (NRTN) provides trophic support to neurons and is considered a therapeutic agent for neurodegenerative diseases, such as Parkinson's disease. It binds to its co-receptor GFRa2, and the resulting NRTN-GFRa2 complex activates the transmembrane receptors rearranged during transfection (RET) or the neural cell adhesion molecule (NCAM). We report the crystal structure of NRTN, alone and in complex with GFRa2. This is the first crystal structure of a GFRa with all three domains and shows that domain 1 does not interact directly with NRTN, but it may support an interaction with RET and/or NCAM, via a highly conserved surface. In addition, biophysical results show that the relative concentration of GFRa2 on cell surfaces can affect the functional affinity of NRTN through avidity effects. We have identified a heparan sulfate-binding site on NRTN and a putative binding site in GFRa2, suggesting that heparan sulfate has a role in the assembly of the signaling complex. We further show that mutant NRTN with reduced affinity for heparan sulfate may provide a route forward for delivery of NRTN with increased exposure in preclinical in vivo models and ultimately to Parkinson's patients.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Heparitina Sulfato/química , Complexos Multiproteicos/química , Neurturina/química , Transdução de Sinais , Cristalografia por Raios X , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurturina/genética , Neurturina/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína
15.
Mol Metab ; 7: 12-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157948

RESUMO

OBJECTIVE: We examined whether skeletal muscle overexpression of PGC-1α1 or PGC-1α4 affected myokine secretion and neuromuscular junction (NMJ) formation. METHODS: A microfluidic device was used to model endocrine signaling and NMJ formation between primary mouse myoblast-derived myotubes and embryonic stem cell-derived motor neurons. Differences in hydrostatic pressure allowed for fluidic isolation of either cell type or unidirectional signaling in the fluid phase. Myotubes were transduced to overexpress PGC-1α1 or PGC-1α4, and myokine secretion was quantified using a proximity extension assay. Morphological and functional changes in NMJs were measured by fluorescent microscopy and by monitoring muscle contraction upon motor neuron stimulation. RESULTS: Skeletal muscle transduction with PGC-1α1, but not PGC-1α4, increased NMJ formation and size. PGC-1α1 increased muscle secretion of neurturin, which was sufficient and necessary for the effects of muscle PGC-1α1 on NMJ formation. CONCLUSIONS: Our findings indicate that neurturin is a mediator of PGC-1α1-dependent retrograde signaling from muscle to motor neurons.


Assuntos
Neurônios Motores/metabolismo , Neurogênese , Junção Neuromuscular/metabolismo , Neurturina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transmissão Sináptica , Animais , Células Cultivadas , Camundongos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Junção Neuromuscular/citologia , Junção Neuromuscular/fisiologia
16.
PLoS One ; 12(11): e0188239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176874

RESUMO

The structural effect of neurturin (NRTN) on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson's disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA) lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks). Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH)+ cells (28 ± 2%), their neurites (32 ± 2%) and the neuron-specific cytoskeletal marker ß-III-tubulin in the substantia nigra; striatal TH(+) fibers were also recovered (52 ± 3%), when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine) and 89 ± 1% (apomorphine). Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurturina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Citoesqueleto/metabolismo , Espinhas Dendríticas/metabolismo , Dopamina/metabolismo , Ensaio de Imunoadsorção Enzimática , Membro Anterior/fisiologia , Masculino , Camundongos , Neuritos/metabolismo , Oxidopamina , Ratos Wistar , Receptores de Neurotensina/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Transfecção , Vibrissas/fisiologia
17.
Neuron ; 95(4): 896-913.e10, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28817804

RESUMO

Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicing-modulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation.


Assuntos
Compostos de Dansil/metabolismo , Galactosamina/análogos & derivados , Neurturina/metabolismo , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células COS , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Galinhas , Técnicas de Cocultura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Galactosamina/genética , Galactosamina/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurturina/genética , Mapas de Interação de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Alinhamento de Sequência
18.
Pain ; 158(11): 2196-2202, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28825602

RESUMO

Psoriasis is often accompanied by itch, but the mechanisms behind this symptom remain elusive. Dynamic changes in epidermal innervation have been observed under chronic itch conditions. Therefore, we investigated whether epidermal innervation is altered in the imiquimod-induced psoriasis mouse model, whether blockade of neurotrophic growth factor signaling can reduce these changes, and whether this system can impact psoriatic itch. Over the 7-day time course of imiquimod treatment, the density of epidermal nonpeptidergic nerves significantly increased, whereas the density of peptidergic nerves significantly decreased. The nonpeptidergic epidermal nerves expressed glial cell line-derived neurotrophic factor (GDNF) family receptor GFRα-1 and GFRα-2, the ligand-binding domains for GDNF and neurturin (NRTN). The NRTN mRNA expression was elevated in the skin of imiquimod-treated mice, whereas the GDNF mRNA expression was decreased. Treatment of imiquimod-challenged mice with an NRTN-neutralizing antibody significantly reduced nonpeptidergic nerve density as well as spontaneous scratching. These results indicate that NRTN contributes to an increase in the epidermal density of nonpeptidergic nerves in the imiquimod-induced psoriasis model, and this increase may be a factor in chronic itch for these mice. Therefore, inhibition of NRTN could be a potential treatment for chronic itch in psoriasis.


Assuntos
Fibras Nervosas/patologia , Neurturina/metabolismo , Prurido/etiologia , Psoríase/complicações , Psoríase/patologia , Pele/inervação , Adjuvantes Imunológicos/uso terapêutico , Aminoquinolinas/uso terapêutico , Animais , Anticorpos/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Imiquimode , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurturina/genética , Neurturina/imunologia , Psoríase/tratamento farmacológico , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2X3/metabolismo
19.
J Cell Sci ; 130(9): 1559-1569, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28348107

RESUMO

The importance of macrophages in tissue development and regeneration has been strongly emphasized. However, the specific roles of macrophage colony-stimulating factor (MCSF), the key regulator of macrophage differentiation, in glandular tissue development have been unexplored. Here, we disclose new macrophage-independent roles of MCSF in tissue development. We initially found that MCSF is markedly upregulated at embryonic day (E)13.5, at a stage preceding the colonization of macrophages (at E15.5), in mouse submandibular gland (SMG) tissue. Surprisingly, MCSF-induced branching morphogenesis was based on a direct effect on epithelial cells, as well as indirectly, by modulating the expression of major growth factors of SMG growth, FGF7 and FGF10, via the phosphoinositide 3-kinase (PI3K) pathway. Additionally, given the importance of neurons in SMG organogenesis, we found that MCSF-induced SMG growth was associated with regulation of neurturin expression and neuronal network development during early SMG development in an in vitro organogenesis model as well as in vivo These results indicate that MCSF plays pleiotropic roles and is an important regulator of early SMG morphogenesis.


Assuntos
Fator Estimulador de Colônias de Macrófagos/farmacologia , Morfogênese/efeitos dos fármacos , Glândula Submandibular/crescimento & desenvolvimento , Animais , Epitélio/efeitos dos fármacos , Epitélio/embriologia , Epitélio/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos ICR , Crescimento Neuronal/efeitos dos fármacos , Neurturina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/metabolismo
20.
J Neurophysiol ; 117(3): 1258-1265, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031403

RESUMO

Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show that overexpression of neurturin in basal keratinocytes regulates mechanical responsiveness in A-fiber primary sensory neurons while increasing the overall numbers of cold-sensing units. Results demonstrate a crucial role for cutaneous neurturin in modulating responsiveness to peripheral stimuli at the level of the primary afferent.


Assuntos
Vias Aferentes/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Neurturina/metabolismo , Pele/inervação , Temperatura , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas/fisiologia , Neurturina/genética , Estimulação Física , Psicofísica , Limiar Sensorial/fisiologia , Pele/metabolismo , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...